Students

Faculty/Staff

Parents

By the end of grade seven, students are adept at manipulating numbers and equations and understand the general principles at work. Students understand and use factoring of numerators and denominators and properties of exponents. They know the Pythagorean theorem and solve problems in which they compute the length of an unknown side. Students know how to compute the surface area and volume of basic three-dimensional objects and understand how area and volume change with a change in scale. Students make conversions between different units of measurement. They know and use different representations of fractional numbers (fractions, decimals, and percents) and are proficient at changing from one to another. They increase their facility with ratio and proportion, compute percents of increase and decrease, and compute simple and compound interest. They graph linear functions and understand the idea of slope and its relation to ratio.

- Pre-Algebra is designed for students who need further preparation before undertaking the Algebra 1 course. As well as covering the topics of arithmetic, prime numbers, factoring, operations on integers, exponents, roots, fractions, decimals and percentages, it prepares students for future study of geometry, probability and data analysis.
In algebra, students learn to reason symbolically, and the complexity and types of equations and problems that they are able to solve increase dramatically as a consequence. The key content for Algebra 1 involves understanding, writing, solving, and graphing linear and quadratic equations, including systems of two linear equations in two unknowns. Quadratic equations may be solved by factoring, completing the square or applying the quadratic formula. Students should also become comfortable with operations on monomial and polynomial expressions. They learn to solve problems employing all of these techniques, and they extend their mathematical reasoning in many important ways, including justifying steps in an algebraic procedure and checking algebraic arguments for validity.

- The main purpose of the geometry curriculum is to develop geometric skills and concepts and the ability to construct formal logical arguments and proofs in a geometric setting. Although the curriculum is weighted heavily in favor of plane (synthetic) Euclidean geometry, there is room for placing special emphasis on coordinated geometry and its transformations. Students construct and judge the validity of a logical argument and give counterexamples to disprove a statement. Starting with undefined terms and axioms, students learn to establish the validity of other assertions through logical deductions; that is, they learn to prove theorems. This is their first encounter with an axiomatic system, and experience shows that they do not easily adjust to the demand of total precision needed for the task. In general, it is important to impress on students from the beginning that the main point of a proof is the mathematical correctness of the argument, not the literary polish of the writing or the adherence to a particular proof format.
- Algebra 2 expands on the mathematical content of Algebra 1 and Geometry. There is no single unifying theme. Instead, many new concepts and techniques are introduced that will be basic to more advanced courses in mathematics and the sciences and useful in the workplace. In general terms the emphasis is on abstract thinking skills, the function concept and the algebraic solution of problems in various content areas.
### Grade 11 - Precalculus

- Teacher: Brad

The Precalculus course is a combination of topics in mathematical analysis, trigonometry and linear algebra needed to prepare for the study of AP Calculus. It strengthens conceptual understanding of problems and mathematical reasoning as well as preparing students intending to study calculus, more advanced mathematics, physics and other sciences and engineering at university level.

Functions, Statistics and Trigonometry builds on the algebra and geometry students have previously studied to examine functions, statistics and trigonometry in a unified way to help students prepare for everyday life and future courses in mathematics. Spreadsheets and other technology are employed to explore and investigate complicated functions and data.

Calculus is a widely applied area of mathematics involving beautiful intrinsic theory. The AP Calculus course is presented with the same level of depth and rigor as are entry-level college and university calculus courses. The standards outline a complete college curriculum in single variable calculus including the topics of derivatives, integrals, limits, approximation, application and modeling.